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ABSTRACT 

Finite element method (FEM) is traditionally recognized by its versatility for handling 
complicated geometries at a relative ease.  This paper focuses on the development of a FEM 
solver for the Compressible Fluid Dynamics problems using the Mixed Explicit Implicit (MEI) 
method.  The method utilizes object oriented program languages to create a unified environment 
for pre-processor, the main solver, and post processor.  With this approach, the user can obtain 
the solution to the compressible Navier Stokes equations all in one environment, starting from 
the very raw data all the way to post-processing and analysis of the results.  The success of this 
method is illustrated in several examples including compressible flow in laminar boundary layer 
shock interactions, ramjet, scramjet, and SSME nozzles. First, the grid is automatically generated 
upon selection of appropriate mesh parameters. On the same environment, the flow field 
parameters can also be specified before the flow solver is executed. Upon solution convergence, 
the results can be displayed on the same window. The procedure can be repeated until 
satisfactory results are achieved. 

INTRODUCTION 

Most programs for CFD analysis usually consist of environment in which the user must generate 
a separate input data that must be fed into the pre-processor.  Then the results obtained by pre-
processor must be checked by a graphic package to ensure the integrity of the resulting grid. 
Then CFD solver is run and a set of output data files are generated.  The data files contains 
information about the flow field properties such as density, pressure, velocity, energy, 
temperature, etc. At the last stage, the results generated by the solver are viewed by a post 
processor.  The results range from grid, density, pressure, Mach number contours or the surface 
properties such as skin-friction or pressure distribution.  Then this process is repeated until a 
satisfactory solution is obtained.  This process however appears to be inefficient and there exists 
a lot of “overhead” in the process that may be eliminated. The proposed development will 
integrate the three environments into one unified environment.  The preprocessor, solver and 
post processor will be accessible simultaneously.  This procedure will remove the overhead 
needed for accessing the data form one step to another.   

METHOD OF SOLUTION 

A robust FEM program that will aid in analysis and design related to high speed aerodynamics 
has been developed.  The program will enable users to study and analyze flow around 



complicated geometry such as ramjets, scramjets, internal flow in a space shuttle main engine or 
flow past conic shape objects with relative ease.  The main feature of this program is its user-
friendliness, in that the user will be able to access all input and output files in one unified 
environment.  The Mix-Explicit Implicit algorithm in FEM will be utilized in the solution 
algorithm.  The program will address the solution of in-viscid Navier Stokes equations and then 
this algorithm will be extended to cover the viscous cases.  The methodology will also be 
extended to cover the viscous cases and the solution will be validated.  The programs will be 
integrated into one unified environment using the object oriented programming languages such 
as Visual Basic, C++, Java, etc. 

FORMULATIONS 

The critical issues for the MEI code development are numerical scheme stability, discontinuity 
capturing and accuracy. The computer program will be developed based on the existing MEI 
numerical algorithm. The end product of this project will be  a user-friendly environment for the 
solution of two-dimensional CFD problems using Finite Element Techniques.  This code may be 
applied to investigate the high speed (supersonic to low hypersonic flow) fluid flow around or 
inside complicated geometry.  In the following paragraph a brief description of the governing 
equations as well as the methodology used for the solution of these equations is described. 

The Navier-Stokes system of equations characterizing the compressible viscous flows written in the 
conservation form is  given by: 
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where U is the vector of unknowns (dependent variables), F is the convection flux vector, G is the 
diffusion  flux vector and B is body force vector. Each of the variables in equation (1) are 
defined below: 
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Here ρ represents the density, u and v denote the x and y components of the velocity and p 
represents the pressure. The components of the stress tensor τ ij are given by:  
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The heat fluxes along the coordinate directions are defined as: 
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and the total enthalpy, H, is given by:  
H=(ρE+p) 

The next step in this process is to solve this system of equations.  Although numerous algorithms 
have evolved for the solution of this system of equations, the methodology used here is the MEI 
algorithm using FEM.  

 
The conservative form of governing equations (1) for compressible viscous flows is  re written as:  
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where U , F, G and B are the conservation variables, convection flux, diffusion flux, and source 
terms, respectively. For laminar flows in Cartesian coordinate system, and in the absence of body 
forces, the source term vector B is set to zero. Since U=U(x,t), F=F(U) and G=G(U, U,j) we may 
write the following relations for F and G:  
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Where ai, bi and cij are the jacobians associated with the convection flux, diffusion  flux and 
diffusion flux gradients, respectively. 
Un+1  is expanded in Taylor series about Un as follows: 
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where s1 and s2 are the implicitness parameters associated with the first and second order derivatives 
with respect to time, respectively, with  0 < s1 < 1 and  0  < s2 < 1 and 
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Substituting equation (8) into equation (7)  yields 
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The second derivative of U with respect to time may now be written in terms of the Jacobeans 
defined by equation (6) as:  
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Substituting equations (5) and (10) into equation (8) and the resulting equations into equation (7) we 
arrive at Un+1 in the form, 
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In order to provide different amount of damping to the diffusion terms, two new implicitness 
parameters , s3   and s4,  are defined in  the following manner:  
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where s3 and s4 are associated with the first order and second order dissipative implicitness 
parameters, respectively. Substituting equation (12)  into equation (11) and neglecting the third order 
spatial derivatives of the conservative variables associated with cjk we arrive at the following 
relationship for the residual, R: 
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All the Jacobeans, ai, bi and cij  in equation (13) are assumed constant in space within each time step. 
Equation (13) is the basis for the galerkin finite element formulation. The galerkin finite element 
formulation of the above relation is obtained by taking the inner product of the residual R and the 
test function Φα and integrating over the domain, Ω: 
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The compact form of this formulation is given by the following relationship: 
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here α, β are the indices associated with the global node and r,s are the indices associated with the 
individual equations. Each of the matrices Aαβ ,Bαβrs, Nαr n+1, Nαr

n and Hαr
n are defined as follows: 
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Here the source terms associated with B are neglected. In this formulation Φ indicates the 
interpolating functions associated with the flux terms inside the domain and the '*' denotes the 
interpolating function associated with the terms in the boundary. 

ACOUSTIC MODELING 

The wave equation that describes sound propagating in free air is governed by: 
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which can be linearized at the outside surface by the Kirchchoff formulation: 
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which reduces to a simple wave equation in the special case of stationary sources (u ).  A 
solution to the pressure field can be expressed by the surface integrals as (Morino and Tseng 
1990, Lyrintzis & Mankbadi 1996) 
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In the above equations,  is the freestream Mach number, c  the speed of sound in the 
freestream, the prime a point on the Kirchhoff surface, 

∞M ∞

τ is the retarded time tt ′−=τ ,  the 
outward normal to the Kirchhoff surface .  Thus the pressure at any instant in the region 
outside the Kirchhoff surface can be expressed in terms of the information prescribed on the 
Kirchhoff surface.  The required data on pressure, and its normal and temporal derivatives on the 
Kirchhoff surface are taken from the CFD solution. 
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USER-FRIENDLY ENVIRONMENT 

The next task is to develop a user friendly environment so that input data, may be generated, 
program may run on a PC based computer and the graphical results may be viewed, and analyzed 
immediately.  This aspect of the research is viewed an important aspect, because the computational 
costs associated with the calculations is drastically reduced as compared with the solutions obtained 
on the suppercomputers. 

BENCHMARK CASES 

The success of the development has been demonstrated through several applications. Figure 1 
shows the computational grid for laminar shock wave boundary layer shock interaction. As the 
computation progresses, a shock wave is formed and its interaction with the boundary layer can 
be detected, as shown in Figure 2. In another application, the grid is also clustered near the 
boundary surface, as for the ramjet case (Figure 3). Upon solution convergence, the density and 
pressure contours can be plotted in Figures 4 and 5, respectively. The area of interest can be 
zoomed in, as shown in Figure 6, to focus on the position where shock waves interact with the 
boundary layer. Here, the recirculation zone is clearly visible. Figures 7 and 8 show the grid and 
solution contours inside a rocket nozzle. Figure 9 is the computational grid generated around a 
scramjet nozzle.  Throughout these examples, the user can generate the grid, specify the flow 
condition, solve the flow field, and visualize the solution – all in one environment. The process 
can be repeated until a satisfatory solution has been achieved. 

 

    



 
Figure 1.  Grid for laminar shock wave 

boundary layer interaction 

 
Figure 2.  Density contours for the shock 

wave boundary layer interaction 

 

 
Figure 3.  Grid for the ramjet 

 
Figure 4.  Pressure contours for the ramjet 

 

 

    



 
Figure 5.  Stream line contours for ramjet. 

 
Figure 6.  Close up view of the stream line 

contours 

 

 
Figure 7.  Mesh for a nozzle 

 
Figure 8.  Pressure contours for flow inside 

a nozzle 

 

    



 

 
Figure 9.  Geometry of scramjet. 

    



    

 

CONCLUSIONS  

A unifired FEM has been developed for solving compressible fluid dynamics problems. The 
development is aimed to allow the achivement of quick and accurate solution using MEI scheme. 
In addition, the goal of this unified development is to integrate pre-processing, flow solver, and 
post-processing into one environment, thus alleviate many “overheads” in solving CFD 
problems.  
 
At the time of this publication, the code has been successfully modified to include a solution-
adaptive procedure in an effort to improve the solution efficiency. Other ongoing developments 
include but are not limited to acoustic modeling, turbulence modeling, and 3-D extension. 
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